奥数之家
奥数论坛
简短留言
| 首页 | 竞赛大纲 | 优秀前辈 | 视频提示 | 专题讲座 | 论文锦集 | 综合训练 | 修身养性 | 家教平台 | 奥数论坛 |
 
The 8th Balkan Mathematical Olympiad
1991年第8届巴尔干地区数学奥林匹克
  1. The circumcircle of the acute-angled triangle ABC has center O. M lies on the minor arc AB. The line through M perpendicular to OA cuts AB at K and AC at L. The line through M perpendicular to OB cuts AB at N and BC at P. MN = KL. Find angle MLP in terms of angles A, B and C.
  2. Find an infinite set of incongruent triangles each of which has integral area and sides which are relatively prime integers, but none of whose altitudes are integral.
  3. A regular hexagon area H has its vertices on the perimeter of a convex polygon of area A. Prove that 2A ≤ 3H. When do we have equality ?
  4. A is the set of positive integers and B is A ∪ {0}. Prove that no bijection f: A → B can satisfy f(mn) = f(m) + f(n) + 3 f(m) f(n) for all m, n.
点击此处查看相关视频讲解
在方框内输入单词或词组
建议使用:IE 6.0及以上版本浏览器。不支持 Netscape浏览器。 本站空间由北京师范大学提供
Copyright © 2005-2007 aoshoo.com All Rights Reserved 滇ICP备05000048号
MSN:shuxvecheng@hotmail.com QQ:316180036 E-mail:aoshoo@sina.com 电话:15810289082