奥数之家
奥数论坛
简短留言
| 首页 | 竞赛大纲 | 优秀前辈 | 视频提示 | 专题讲座 | 论文锦集 | 综合训练 | 修身养性 | 家教平台 | 奥数论坛 |
 
The Tenth Canadian Mathematical Olympiads
1978年第十届加拿大数学奥林匹克
  1. A square has tens digit 7. What is the units digit?
  2. Find all positive integers m, n such that 2m2 = 3n3.
  3. Find the real solution x, y, z to x + y + z = 5, xy + yz + zx = 3 with the largest z.
  4. ABCD is a convex quadrilateral with area 1. The lines AD, BC meet at X. The midpoints of the diagonals AC and BD are Y and Z. Find the area of the triangle XYZ.
  5. Two players play a game on an initially empty 3 x 3 board. Each player in turn places a black or white piece on an unoccupied square of the board. Each player may play either color. When the board is full player A gets one point for every row, column or main diagonal with 0 or 2 black pieces on it. Player B gets one point for every row, column or main diagonal with 1 or 3 black pieces on it. Can the game end in a draw? Which player has a winning strategy if player A plays first? If player B plays first?
  6. Sketch the graph of x3 + xy + y3 = 3.
点击此处查看相关视频讲解
在方框内输入单词或词组
建议使用:IE 6.0及以上版本浏览器。不支持 Netscape浏览器。 本站空间由北京师范大学提供
Copyright © 2005-2007 aoshoo.com All Rights Reserved 滇ICP备05000048号
MSN:shuxvecheng@hotmail.com QQ:316180036 E-mail:aoshoo@sina.com 电话:15810289082