奥数之家
奥数论坛
简短留言
| 首页 | 竞赛大纲 | 优秀前辈 | 视频提示 | 专题讲座 | 论文锦集 | 综合训练 | 修身养性 | 家教平台 | 奥数论坛 |
 
The 33rd Canadian Mathematical Olympiads
2001年第33届加拿大数学奥林匹克
  1. A quadratic with integral coefficients has two distinct positive integers as roots, the sum of its coefficients is prime and it takes the value -55 for some integer. Show that one root is 2 and find the other root .
  2. The numbers -10, -9, -8, ... , 9, 10 are arranged in a line. A player places a token on the 0 and throws a fair coin 10 times. For each head the token is moved one place to the left and for each tail it is moved one place to the left. If we color one or more numbers black and the remainder white, we find that the chance of the token ending up on a black number is m/n with m + n = 2001. What is the largest possible total for the black numbers ?
  3. The triangle ABC has AB and AC unequal. The angle bisector of A meets the perpendicular bisector of BC at X. The line joining the feet of the perpendiculars from X to AB and AC meets BC at D. Find BD/DC .
  4. A rectangular table has every entry a positive integer. n is a fixed positive integer. A move consists of either subtracting n from every element in a column or multiplying every element in a row by n. Find all n such that we can always end up with all zeros whatever the size or content of the starting table .
  5. A0, A1, A2 lie on a circle radius 1 and A1A2 is not a diameter. The sequence An is defined by the statement that An is the circumcenter of An-1An-2An-3 . Show that A1 , A5 , A9 , A13 , ... are collinear. Find all A1A2 for which A1A1001/A1001A2001 is the 500th power of an integer .
点击此处查看相关视频讲解
在方框内输入单词或词组
建议使用:IE 6.0及以上版本浏览器。不支持 Netscape浏览器。 本站空间由北京师范大学提供
Copyright © 2005-2007 aoshoo.com All Rights Reserved 滇ICP备05000048号
MSN:shuxvecheng@hotmail.com QQ:316180036 E-mail:aoshoo@sina.com 电话:15810289082