奥数之家 奥数论坛 简短留言
 | 首页 | 竞赛大纲 | 优秀前辈 | 视频提示 | 专题讲座 | 论文锦集 | 综合训练 | 修身养性 | 家教平台 | 奥数论坛 |
 The 27th British Mathematical Olympiad 1991年第27届英国奥林匹克数学竞赛 ABC is a triangle with ∠B = 90o and M the midpoint of AB. Show that sin ACM ≤ 1/3. Twelve dwarfs live in a forest. Some pairs of dwarfs are friends. Each has a black hat and a white hat. Each dwarf consistently wears one of his hats. However, they agree that on the nth day of the New Year, the nth dwarf modulo 12 will visit each of his friends. (For example, the 2nd dwarf visits on days 2, 14, 26 and so on.) If he finds that a majority of his friends are wearing a different color of hat, then he will immediately change color. No other hat changes are made. Show that after a while no one changes hat. A triangle has sides a, b, c with sum 2. Show that a2 + b2 + c2 + 2abc < 2 . Let N be the smallest positive integer such that at least one of the numbers x, 2x, 3x, ... , Nx has a digit 2 for every real number x. Find N. Failing that, find upper and lower bounds and show that the upper bound does not exceed 20 . 点击此处查看相关视频讲解 在方框内输入单词或词组