奥数之家
奥数论坛
简短留言
| 首页 | 竞赛大纲 | 优秀前辈 | 视频提示 | 专题讲座 | 论文锦集 | 综合训练 | 修身养性 | 家教平台 | 奥数论坛 |
 
The 36th British Mathematical Olympiad
2000年第36届英国奥林匹克数学竞赛
  1. Two circles meet at A and B and touch a common tangent at C and D. Show that triangles ABC and ABD have the same area .
  2. Find the smallest value of x2 + 4xy + 4y2 + 2z2 for positive reals x, y, z with product 32 .
  3. Find positive integers m, n such that (m1/3 + n1/3 - 1)2 = 49 + 20 (61/3) .
  4. Find a set of 10 distinct positive integers such that no 6 members of the set have a sum divisible by 6. Is it possible to find such a set with 11 members ?
点击此处查看相关视频讲解
在方框内输入单词或词组
建议使用:IE 6.0及以上版本浏览器。不支持 Netscape浏览器。 本站空间由北京师范大学提供
Copyright © 2005-2007 aoshoo.com All Rights Reserved 滇ICP备05000048号
MSN:shuxvecheng@hotmail.com QQ:316180036 E-mail:aoshoo@sina.com 电话:15810289082