奥数之家
奥数论坛
简短留言
| 首页 | 竞赛大纲 | 优秀前辈 | 视频提示 | 专题讲座 | 论文锦集 | 综合训练 | 修身养性 | 家教平台 | 奥数论坛 |
 
The 8th United States of America Mathematics Olympiad
1979年第八届美国数学奥林匹克
  1. Find all sets of 14 or less fourth powers which sum to 1599.
  2. N is the north pole. A and B are points on a great circle through N equidistant from N. C is a point on the equator. Show that the great circle through C and N bisects the angle ACB in the spherical triangle ABC (a spherical triangle has great circle arcs as sides).
  3. a1, a2, ... , an is an arbitrary sequence of positive integers. A member of the sequence is picked at random. Its value is a. Another member is picked at random, independently of the first. Its value is b. Then a third, value c. Show that the probability that a + b + c is divisible by 3 is at least 1/4.
  4. P lies between the rays OA and OB. Find Q on OA and R on OB collinear with P so that 1/PQ + 1/PR is as large as possible.
  5. X has n members. Given n+1 subsets of X, each with 3 members, show that we can always find two which have just one member in common.
点击此处查看相关视频讲解
在方框内输入单词或词组
建议使用:IE 6.0及以上版本浏览器。不支持 Netscape浏览器。 本站空间由北京师范大学提供
Copyright © 2005-2007 aoshoo.com All Rights Reserved 滇ICP备05000048号
MSN:shuxvecheng@hotmail.com QQ:316180036 E-mail:aoshoo@sina.com 电话:15810289082