奥数之家 奥数论坛 简短留言
 | 首页 | 竞赛大纲 | 优秀前辈 | 视频提示 | 专题讲座 | 论文锦集 | 综合训练 | 修身养性 | 家教平台 | 奥数论坛 |
 The 19th Vietnam Mathematical Olympiad 1981年第19届越南奥林匹克数学竞赛 A1.　Show that the triangle ABC is right-angled iff sin A + sin B + sin C = cos A + cos B + cos C + 1. A2.　Find all integral values of m such that x3 + 2x + m divides x12 - x11 + 3x10 + 11x3 - x2 + 23x + 30. A3.　Given two points A, B not in the plane p, find the point X in the plane such that XA/XB has the smallest possible value. B1.　Find all real solutions to: w2 + x2 + y2 + z2 = 50 w2 - x2 + y2 - z2 = -24 wx = yz w - x + y - z = 0. B2.　x1, x2, x3, ... , xn are reals in the interval [a, b]. M = (x1 + x2 + ... + xn)/n, V = (x12 + x22 + ... + xn2)/n. Show that M2 ≥ 4Vab/(a + b)2. B3.　Two circles touch externally at A. P is a point inside one of the circles, not on the line of centers. A variable line L through P meets one circle at B (and possibly another point) and the other circle at C (and possibly another point). Find L such that the circumcircle of ABC touches the line of centers at A. 点击此处查看相关视频讲解 在方框内输入单词或词组