奥数之家 奥数论坛 简短留言
 | 首页 | 竞赛大纲 | 优秀前辈 | 视频提示 | 专题讲座 | 论文锦集 | 综合训练 | 修身养性 | 家教平台 | 奥数论坛 |
 The 23rd Vietnam Mathematical Olympiad 1985年第23届越南奥林匹克数学竞赛 A1.　Find all integer solutions to m3 - n3 = 2mn + 8. A2.　Find all real-valued functions f(n) on the integers such that f(1) = 5/2, f(0) is not 0, and f(m) f(n) = f(m+n) + f(m-n) for all m, n. A3.　A parallelepiped has side lengths a, b, c. Its center is O. The plane p passes through O and is perpendicular to one of the diagonals. Find the area of its intersection with the parallelepiped. B1.　a, b, m are positive integers. Show that there is a positive integer n such that (an - 1)b is divisible by m iff the greatest common divisor of ab and m is also the greatest common divisor of b and m. B2.　Find all real values a such that the roots of 16x4 - ax3 + (2a + 17)x2 - ax + 16 are all real and form an arithmetic progression. B3.　ABCD is a tetrahedron. The base BCD has area S. The altitude from B is at least (AC + AD)/2, the altitude from C is at least (AD + AB)/2, and the altitude from D is at least (AB + AC)/2. Find the volume of the tetrahedron. 点击此处查看相关视频讲解 在方框内输入单词或词组